Processing

Please wait...

Settings

Settings

Goto Application

Offices all Languages Stemming false Single Family Member true Include NPL false
RSS feed can only be generated if you have a WIPO account

Save query

A private query is only visible to you when you are logged-in and can not be used in RSS feeds

Query Tree

Refine Options

Offices
All
Specify the language of your search keywords
Stemming reduces inflected words to their stem or root form.
For example the words fishing, fished,fish, and fisher are reduced to the root word,fish,
so a search for fisher returns all the different variations
Returns only one member of a family of patents
Include Non-Patent literature in results

Full Query

IC:B25J AND EN_ALLTXT:(coronavirus OR coronaviruses OR coronaviridae OR coronavirinae OR orthocoronavirus OR orthocoronaviruses OR orthocoronaviridae OR orthocoronavirinae OR betacoronavirus OR betacoronaviruses OR betacoronaviridae OR betacoronavirinae OR sarbecovirus OR sarbecoviruses OR sarbecoviridae OR sarbecovirinae OR "severe acute respiratory syndrome" OR sars OR "2019 ncov" OR covid)

Side-by-side view shortcuts

General
Go to Search input
CTRL + SHIFT +
Go to Results (selected record)
CTRL + SHIFT +
Go to Detail (selected tab)
CTRL + SHIFT +
Go to Next page
CTRL +
Go to Previous page
CTRL +
Results (First, do 'Go to Results')
Go to Next record / image
/
Go to Previous record / image
/
Scroll Up
Page Up
Scroll Down
Page Down
Scroll to Top
CTRL + Home
Scroll to Bottom
CTRL + End
Detail (First, do 'Go to Detail')
Go to Next tab
Go to Previous tab

Analysis

1.WO/2021/042070DETERGENT-FREE SIMULTANEOUS MULTIOMICS SAMPLE PREPARATION METHOD USING NOVEL NEW VESICLE DESIGN
WO 04.03.2021
Int.Class B25J 19/02
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
19Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
02Sensing devices
Appl.No PCT/US2020/048840 Applicant PROTIFI, LLC Inventor ZOUGMAN, Alexandre
A two-piece assembly for sequential through-matrix processing of solutions and/or solids is provided, the assembly having an inner vial which maintains and holds the matrix and an outer vial which is configured to receive the inner vial at the upper or lower parked positions, to respectively allow or impede passage of the solution through the matrix of the upper vial. Captured molecules can be treated with enzymes and/or chemistries in situ in the matrix, and without the need for the use of strong chaotropic agents such as urea or detergents like SDS.
2.WO/2022/093108A SANITIZATION DEVICE AND METHOD
WO 05.05.2022
Int.Class A61L 2/10
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
2Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
02using physical phenomena
08Radiation
10Ultra-violet radiation
Appl.No PCT/SG2020/050628 Applicant LIAN, Wei Huan Inventor LIAN, Wei Huan
A sanitization device is disclosed. The sanitization device includes a wheeled base, a body coupled to the wheeled base, and one or more arms attached to the body. Each arm is moveable between a retracted position adjacent the body and an extended position away from the body. The sanitization device further includes one or more germicidal lamps supported on each arm. A sanitization method using the sanitization device is also disclosed.
3.20210353794Method and device to allow antiseptic proximity seating
US 18.11.2021
Int.Class A61L 2/10
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
2Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
02using physical phenomena
08Radiation
10Ultra-violet radiation
Appl.No 16876337 Applicant Victor Popa-Simil Inventor Victor Popa-Simil

With respect to pandemics, restaurants, stadiums, cafeterias, and bars are among the most dangerous places to socialize due to the form of interaction. Exchange of bacteria and viruses are facilitated intensively from the mouth and nose via air transport in droplets of saliva and bodily fluids being deposited on surfaces, foods, and in the air. The present development creates a comfortable environment where the air-space of each customer is separated by invisible cold-hot air and vis-UV barriers, which take away bacteria and viruses, destroying them and preventing recirculation while offering pleasant, clean, and sanitized ambient conditions for a face to face meeting. An immersive experience can be provided with surrounding screens and gas therapy that may be customized according to the customer's preferences. Food distribution is performed with a robotic shuttle system and when the customer departs, an extensive cleanup is performed using chemicals and UV irradiation through robotic systems.

4.20200397936Systems and Methods For Internet-Of-Things (IOT) Robotic Sterilization Device
US 24.12.2020
Int.Class A61L 2/24
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
2Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
24Apparatus using programmed or automatic operation
Appl.No 17001587 Applicant ATOM, Inc. Inventor Yani Deros

An internet-of-things (IOT) robotic sterilization system that operates autonomously for use in the prevention of diseases, e.g., Coronavirus Disease 2019 (COVID-19), caused by pathogens such as coronavirus SARS-CoV-2 and other pathogens present within an interior space is described. A robotic sterilization device is communicatively coupled to the IOT base module via an IOT network, and includes a misting or fogging system fluidically coupled to a liquid reservoir, a sensor module including plurality of sensors, a controller, and a locomotion system. The robotic sterilization device navigates a path within the interior space while creating a disinfecting mist with the misting system, and may coordinate with other IOT-connected devices, such as the HVAC system, UV Vent sterilizers, scent dispensing appliances, and others to more efficaciously sanitize the interior space to protect humans by eliminating pathogens.

5.WO/2016/079514DEVICE FOR CONTAINING DEADLY GERMS OF A PATIENT DURING TREATMENT
WO 26.05.2016
Int.Class A61G 10/00
AHUMAN NECESSITIES
61MEDICAL OR VETERINARY SCIENCE; HYGIENE
GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
10Treatment rooms for medical purposes
Appl.No PCT/GB2015/053513 Applicant POENISCH, Adele Inventor POENISCH, Adele
Methods and devices are presented for the long-term treatment of a patient infectious with deadly microbes without a risk for spread of germs to caregivers comprising a hermetically sealed human sized containment box with means for delivering medical care, for sustaining life, and for dealing with waste products, as well as providing rehabilitative care.
6.20050022485Air cleaning robot and system thereof
US 03.02.2005
Int.Class A47L 9/00
AHUMAN NECESSITIES
47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
9Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
Appl.No 10822653 Applicant Samsung Gwangju Electronics Co., Ltd. Inventor Park Jee-su

An air cleaning robot and a system thereof which are capable of performing air cleaning while traveling around a predetermined area. The air cleaning robot includes a robot body, a driving part for driving a plurality of wheels disposed at lower portions of the robot body, an air cleaning part disposed in the robot body, for drawing-in dust-ladened air from a cleaning area, air filtering, and discharging cleaned air. A controller is disposed in the robot body for controlling the air cleaning part and the driving part. Accordingly, since the air cleaning robot and the system thereof perform air cleaning while traveling automatically around a predetermined area, there is an improvement in a residential household, living environment, and less of an inconvenience to operate.

7.20050015914Robot cleaner having air cleaning function and system thereof
US 27.01.2005
Int.Class A47L 5/00
AHUMAN NECESSITIES
47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
5Structural features of suction cleaners
Appl.No 10804078 Applicant SAMSUNG GWANGJU ELECTRONICS CO., LTD. Inventor You Jea-sun

A robot cleaner for cleaning ambient air in a cleaning area while cleaning a cleaning surface, and a system thereof. The robot cleaner and the system thereof comprise a body, a driving part driving a plurality of wheels disposed at a lower portion of the body, a dust suction part formed in the body to draw-in dust from a cleaning surface, and an air cleaning part formed in the body to draw-in dust-ladened air from a cleaning area. The robot cleaner cleans the air and discharges cleaned air, and, utilizing a controller disposed in the body, controls the driving part and the air cleaning part. Accordingly, since the robot cleaner provides cleaned and fresh air to a predetermined cleaning area while cleaning a surface, it contributes to a fresher residential environment.

8.10906180Monitoring and maintaining an intravenous assembly without medical staff involvement for safe distancing enforcement
US 02.02.2021
Int.Class B25J 9/16
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
16Programme controls
Appl.No 16880789 Applicant 123IV, Inc. Inventor Allen B. Chefitz

A method and system to monitor and autonomously configure an intravascular assembly without medical staff involvement or presence. In this solution, a robotic device is associated with an intravascular assembly, which has tubing through which fluids are delivered intravenously. Monitoring of the tubing is initiated. In response to the monitoring, an errant flow through the tubing is detected; typically, the errant flow results from one of: a kink or twist in the tubing, an air bubble in the tubing, an occlusion or clot in the tubing, and pressure variations. In response to detecting the errant flow, and in advance of an audible alarm being generated in association with the intravascular assembly, a command is then issued to the associated robotic device. The command is configured to initiate, by the robotic device, physical engagement with and mechanical manipulation of the tubing, thereby remediating the errant flow automatically.

9.WO/2021/155213MONITORING AND MAINTAINING AN INTRAVENOUS ASSEMBLY WITHOUT MEDICAL STAFF INVOLVEMENT FOR SAFE DISTANCING ENFORCEMENT
WO 05.08.2021
Int.Class B25J 9/16
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
16Programme controls
Appl.No PCT/US2021/015796 Applicant 123IV, INC. Inventor CHEFITZ, Allen, B.
A method and system to monitor and autonomously configure an intravascular assembly without medical staff involvement or presence. In this solution, a robotic device is associated with an intravascular assembly, which has tubing through which fluids are delivered intravenously. Monitoring of the tubing is initiated. In response to the monitoring, an errant flow through the tubing is detected; typically, the errant flow results from one of: a kink or twist in the tubing, an air bubble in the tubing, an occlusion or clot in the tubing, and pressure variations. In response to detecting the errant flow, and in advance of an audible alarm being generated in association with the intravascular assembly, a command is then issued to the associated robotic device. The command is configured to initiate, by the robotic device, physical engagement with and mechanical manipulation of the tubing, thereby remediating the errant flow automatically.
10.20210291370Monitoring and maintaining an intravenous assembly without medical staff involvement for safe distancing enforcement
US 23.09.2021
Int.Class B25J 9/16
BPERFORMING OPERATIONS; TRANSPORTING
25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; HANDLES FOR HAND IMPLEMENTS; WORKSHOP EQUIPMENT; MANIPULATORS
JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
9Programme-controlled manipulators
16Programme controls
Appl.No 17163885 Applicant 123IV, Inc. Inventor Allen B. Chefitz

A method and system to monitor and autonomously configure an intravascular assembly without medical staff involvement or presence. In this solution, a robotic device is associated with an intravascular assembly, which has tubing through which fluids are delivered intravenously. Monitoring of the tubing is initiated. In response to the monitoring, an errant flow through the tubing is detected; typically, the errant flow results from one of: a kink or twist in the tubing, an air bubble in the tubing, an occlusion or clot in the tubing, and pressure variations. In response to detecting the errant flow, and in advance of an audible alarm being generated in association with the intravascular assembly, a command is then issued to the associated robotic device. The command is configured to initiate, by the robotic device, physical engagement with and mechanical manipulation of the tubing, thereby remediating the errant flow automatically.