Processing

Please wait...

Settings

Settings

Goto Application

1. WO2021110268 - DAC WEIGHT CALIBRATION

Publication Number WO/2021/110268
Publication Date 10.06.2021
International Application No. PCT/EP2019/083806
International Filing Date 05.12.2019
IPC
H03M 1/06 2006.01
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING, DECODING OR CODE CONVERSION, IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
06Continuously compensating for, or preventing, undesired influence of physical parameters
H03M 1/10 2006.01
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING, DECODING OR CODE CONVERSION, IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
10Calibration or testing
H03M 1/68 2006.01
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING, DECODING OR CODE CONVERSION, IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
66Digital/analogue converters
68with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
H03M 1/74 2006.01
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING, DECODING OR CODE CONVERSION, IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
66Digital/analogue converters
74Simultaneous conversion
CPC
H03M 1/0658
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING; DECODING; CODE CONVERSION IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
06Continuously compensating for, or preventing, undesired influence of physical parameters
0617characterised by the use of methods or means not specific to a particular type of detrimental influence
0634by averaging out the errors, e.g. using sliding scale
0656in the time domain, e.g. using intended jitter as a dither signal
0658by calculating a running average of a number of subsequent samples
H03M 1/066
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING; DECODING; CODE CONVERSION IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
06Continuously compensating for, or preventing, undesired influence of physical parameters
0617characterised by the use of methods or means not specific to a particular type of detrimental influence
0634by averaging out the errors, e.g. using sliding scale
0656in the time domain, e.g. using intended jitter as a dither signal
066by continuously permuting the elements used, i.e. dynamic element matching
H03M 1/1057
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING; DECODING; CODE CONVERSION IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
10Calibration or testing
1009Calibration
1033over the full range of the converter, e.g. for correcting differential non-linearity
1057by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
H03M 1/687
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING; DECODING; CODE CONVERSION IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
66Digital/analogue converters
68with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
687Segmented, i.e. the more significant bit converter being of the unary decoded type and the less significant bit converter being of the binary weighted type
H03M 1/742
HELECTRICITY
03BASIC ELECTRONIC CIRCUITRY
MCODING; DECODING; CODE CONVERSION IN GENERAL
1Analogue/digital conversion; Digital/analogue conversion
66Digital/analogue converters
74Simultaneous conversion
742using current sources as quantisation value generators
Applicants
  • TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) [SE]/[SE]
Inventors
  • FREDRIKSSON, Henrik
Agents
  • ERICSSON
Priority Data
Publication Language English (EN)
Filing Language English (EN)
Designated States
Title
(EN) DAC WEIGHT CALIBRATION
(FR) ÉTALONNAGE DE POIDS DE CNA
Abstract
(EN)
A method of weight calibration in a DAC (25) is disclosed. The DAC (25) comprises an input port (100) for receiving a sequence of digital input words (x[n]), each representing a digital input sample, and a digital control circuit (110) configured to encode each digital input word (x[n]) into a control word (z[n]) representing the same digital input sample. Each bit (Zi) in the control word (z[n]) has a corresponding bit weight (wi) and is in the following considered to adopt values in {-1, 1}. Furthermore, the DAC (25) comprises a set (120) of analog weights, each associated with a unique one of the bits (Zi) in the control word (z[n]), and summation circuitry (130) configured to generate an analog sample corresponding to the digital input sample by summing the bits in the control word (Zi) weighted by the respective associated analog weights. The DAC (25) also has an output (140) for outputting the analog sample. The method comprises, during a measurement procedure, for a first set of at least one bit of the control word (z[n]), generating (300) the bits of the first set, such that a first sum of the bits in the first set weighted by their respective bit weights is, on average, above zero. Furthermore, the method comprises, during the measurement procedure, for a second set of at least one bit of the control word (z[n]), generating (310) the bits of the second set, such that a second sum of the bits in the second set weighted by their respective bit weights is, on average, below zero and such that the sum of the first sum and the second sum is, on average, equal to zero. The method also comprises detecting (330) a DC level at the output of the DAC during the measurement procedure. The method further comprises adjusting (340) at least one analog weight in response to the detected DC level. A corresponding DAC, a corresponding electronic apparatus, and a corresponding integrated circuit are also disclosed.
(FR)
L'invention concerne un procédé d'étalonnage de poids d'un CNA (25). Le CNA (25) comprend un port d'entrée (100) servant à recevoir une séquence de mots d'entrée numérique (x[n]), représentant individuellement un échantillon d'entrée numérique, et un circuit de commande numérique (110) configuré pour coder chaque mot d'entrée numérique (x[n]) en un mot de commande (z[n]) représentant le même échantillon d'entrée numérique. Chaque bit (Z i ) du mot de commande (z[n]) a un poids binaire correspondant (w i ) et est considéré par la suite comme adoptant des valeurs comprises dans {-1, 1}. En outre, le CNA (25) comprend un ensemble (120) de poids analogiques, chaque poids étant associé à un bit unique parmi les bits (Z i ) du mot de commande (z[n]), et des circuits de sommation (130) configurés pour générer un échantillon analogique correspondant à l'échantillon d'entrée numérique par addition des bits du mot de commande (Z i ) pondérés par les poids analogiques associés respectifs. Le CNA (25) comporte également une sortie (140) servant à délivrer l'échantillon analogique. Le procédé consiste, pendant une procédure de mesure, pour un premier ensemble d'au moins un bit du mot de commande (z[n]), à générer (300) les bits du premier ensemble, de sorte qu'une première somme des bits du premier ensemble pondérés par leurs poids binaires respectifs soit, en moyenne, supérieure à zéro. En outre, le procédé consiste, pendant la procédure de mesure, pour un second ensemble d'au moins un bit du mot de commande (z[n]), à générer (310) les bits du second ensemble, de sorte qu'une seconde somme des bits du second ensemble pondérés par leurs poids binaires respectifs soit, en moyenne, inférieure à zéro et de sorte que la somme de la première somme et de la seconde somme soit, en moyenne, égale à zéro. Le procédé consiste également à détecter (330) un niveau de courant continu à la sortie du CNA pendant la procédure de mesure. Le procédé consiste de plus à ajuster (340) au moins un poids analogique en réponse au niveau de courant continu détecté. L'invention concerne également un CNA correspondant, un appareil électronique correspondant, un circuit intégré correspondant et un procédé correspondant.
Latest bibliographic data on file with the International Bureau