Please wait...
Please let us know your thoughts on PATENTSCOPE or tell us what you feel is missing or how we could improve it.
The present invention generally relates to methods of biological reduction of metal-cyanide complexes after metal-cyanidation and methods of biologically hydrolysing cyanide. More particularly, the present invention allows the engineering of an integrated synthetic lixiviant biological system to be housed within a synthetic host (such as the cyanogenic Chromobacterium violaceum) for efficient precious metal recovery and toxic metal remediation of electronic waste; with up to four main components/modules in the design and engineering of the synthetic host: 1) synthetic cyanogenesis; 2) synthetic metal recovery; 3) synthetic cyanolysis; and 4) synthetic circuits for lixiviant biology. Bacteria capable of reducing ionic metal to ionic metal (such as gold or silver) as nanoparticles, comprising mercury(ll) reductase (MerA) comprising a substitution mutation at position V317, Y441, C464, A323D, A414E, G415I, E416C, L417I, I418D, or A422N, are also disclosed. Processes of synthetic cyanide lixiviant production using genetically engineered bacterium transformed with a heterologous hydrogen cyanide synthase gene and a heterologous 3-phosphoglycerate dehydrogenase mutant gene are also disclosed. Processes of synthetic cyanolysis using a genetically engineered bacterium transformed with a heterologous nitrilase gene are also disclosed.