Processing

Please wait...

Settings

Settings

Goto Application

1. WO2020209034 - FIBER STRUCTURE AND PRESSURE VESSEL

Document

明 細 書

発明の名称 繊維構造体及び圧力容器

技術分野

0001  

背景技術

0002   0003   0004  

先行技術文献

特許文献

0005  

発明の概要

発明が解決しようとする課題

0006  

課題を解決するための手段

0007   0008   0009   0010   0011   0012   0013   0014   0015   0016   0017   0018   0019   0020   0021   0022   0023   0024  

発明の効果

0025  

図面の簡単な説明

0026  

発明を実施するための形態

0027   0028   0029   0030   0031   0032   0033   0034   0035   0036   0037   0038   0039   0040   0041   0042   0043   0044   0045   0046   0047   0048   0049   0050   0051   0052   0053   0054   0055   0056   0057   0058   0059   0060   0061   0062   0063   0064   0065   0066   0067  

符号の説明

0068  

請求の範囲

1   2   3   4   5   6  

図面

1   2   3   4   5   6   7   8   9   10   11  

明 細 書

発明の名称 : 繊維構造体及び圧力容器

技術分野

[0001]
 本発明は、ライナにおける胴体部及びドーム部を外側から覆う繊維強化基材を有する繊維構造体及び圧力容器に関する。

背景技術

[0002]
 近年、天然ガスを燃料とする自動車が低公害車として注目されており、より低公害のものとして、燃料電池を動力源とする自動車も注目されている。燃料電池の燃料として水素ガスを燃料タンクに収容する自動車もあるが、燃料タンクとなる圧力容器の重量が重く燃費が悪くなる。この不都合を解消するため、ガスバリア性を有するライナ(内殻)を耐圧性の繊維強化複合材層で覆った圧力容器が提案されている。
[0003]
 このような圧力容器において、一般に、ライナは円筒状の胴体部の中心軸線の延びる方向(以下、軸方向とする)の両端側に曲面状のドーム部を有する形状である。圧力容器内には数十MPaの圧力になるようにガスが充填されるが、繊維強化複合材層により、ライナが補強されている。
[0004]
 このような圧力容器において、使用時に高圧のガスが充填されるとライナには大きな内圧が作用する。この内圧によりライナに荷重が加わるが、胴体部とドーム部では、加わる荷重の大きさ、荷重の加わる方向が異なるため、胴体部とドーム部の境界付近で繊維強化複合材層に歪みが生じやすい。この歪みにより、繊維強化複合材層の各層の間に層間せん断応力が生じ、繊維強化複合材層の層間剥離が生じて、圧力容器の強度が低下する虞がある。この層間剥離を原因とした圧力容器の強度の低下を抑制するために、例えば、特許文献1では、胴体部とドーム部との境界付近に、繊維強化複合材層を貫通するピンを設け、層間剥離を抑制している。

先行技術文献

特許文献

[0005]
特許文献1 : 特開2010-249146号公報

発明の概要

発明が解決しようとする課題

[0006]
 ところが、特許文献1においては、繊維強化複合材層における層間剥離を抑制するためのピンを必要とし、部品点数が増加して製造コストが嵩んでしまっている。
 本発明の目的は、部品を増やさずに繊維強化複合材層における層間剥離を抑制できる繊維構造体及び圧力容器を提供することにある。

課題を解決するための手段

[0007]
 上記問題点を解決するための繊維構造体は、円筒状の胴体部と、前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体であって、前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器を構成し、前記繊維強化基材は、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1繊維束と、前記第1繊維束と織物を形成する第2繊維束とを有し、前記軸方向に沿う前記胴体部と前記ドーム部との境を境界とした場合、前記繊維強化基材は、前記第1繊維束として、他の第1繊維束よりも弾性率の高い高弾性繊維束を有するとともに、他の第1繊維束として、前記高弾性繊維束よりも弾性率の低い低弾性繊維束を有し、前記高弾性繊維束は前記境界を含んで前記胴体部に配列されていることを要旨とする。
[0008]
 これによれば、ライナの境界付近において、軸方向に沿った境界から胴体部寄りの部分は、ライナの軸方向に直交する方向(以下、径方向とする)への寸法がドーム部より大きく、内圧応力が大きく作用する部分であり、しかも、ライナの径方向への寸法がドーム部から変化する場所であり、内圧を受けて変形し易い部分である。この変形し易い境界を含むように高弾性繊維束を配列することで、圧力容器の繊維強化複合材層における、胴体部付近の剛性を高め、当該繊維強化複合材層により、内圧を受けたときのライナの変形を抑制できる。
[0009]
 また、軸方向に沿った境界よりもドーム部寄りの部分は、ライナの径方向への寸法が胴体部よりも小さくなる部分であり、胴体部と比べると、内圧を受けて変形し難い部分である。
[0010]
 よって、ライナの境界付近において、境界を含むように胴体部に高弾性繊維束を配列し、この高弾性繊維束によって、ライナが内圧を受けたときの変形を抑制することで、境界を境にして胴体部とドーム部とで変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。
[0011]
 したがって、繊維強化基材を形成する第1繊維束の弾性率を調節するだけで、繊維強化複合材層における層間剥離の発生を抑制でき、例えば、層間剥離を抑制するためのピンや、繊維層の追加を必要とせず、繊維強化複合材層における層間剥離の発生を抑制できる。
[0012]
 また、繊維構造体について、前記低弾性繊維束は、前記高弾性繊維束よりも弾性率が低い第1低弾性繊維束、及び、前記第1低弾性繊維束よりも弾性率が高く、かつ前記高弾性繊維束よりも弾性率が低い第2低弾性繊維束を有し、前記繊維強化基材において、前記ドーム部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第1低弾性繊維束が配列され、前記胴体部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列され、前記ドーム部において、前記軸方向に沿って前記第1低弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列されていてもよい。
[0013]
 これによれば、ライナの境界は、ライナの径方向への寸法が胴体部よりも小さくなり、しかも、ライナの径方向への寸法が変化する場所であり、内圧を受けて変形し難い部分である。この変形し難い部分に、低弾性繊維束の中でも、第2低弾性繊維束よりも弾性率の低い第1低弾性繊維束を配列し、内圧を受けたときの変形を許容するようにした。よって、圧力容器において、内圧を受けたとき、境界を挟んだ両側でのライナの変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。
[0014]
 また、ライナの胴体部及びドーム部において、高弾性繊維束及び第1低弾性繊維束が配列された部分以外は、第2低弾性繊維束が配列され、この第2低弾性繊維束により、ライナを径方向に補強できる。
[0015]
 また、繊維構造体について、前記繊維強化基材において、前記軸方向に沿って前記境界を挟んだ前記胴体部及び前記ドーム部に前記高弾性繊維束が配列され、前記胴体部及び前記ドーム部それぞれにおける前記高弾性繊維束が配列された部分以外の部分において前記低弾性繊維束が配列されていてもよい。
[0016]
 これによれば、軸方向に沿って境界を挟んだ両側に高弾性繊維束を配列した。境界付近は、ライナの径方向への寸法が変化する場所であり、内圧を受けて変形し易い部分である。圧力容器において、変形し易い部分に高弾性繊維束を配列して繊維強化複合材層の剛性を高め、内圧を受けたときの変形を抑制できる。
[0017]
 また、繊維構造体について、前記繊維強化基材において、前記軸方向に沿って前記胴体部から前記口金部に至るまで前記高弾性繊維束が配列されるとともに、前記胴体部に前記低弾性繊維束が配列されていてもよい。
[0018]
 これによれば、高弾性繊維束と低弾性繊維束との2種類で繊維強化基材を構成するため、簡単な構成で繊維強化複合材層に層間剥離が発生することを抑制できる。
 また、繊維構造体について、前記繊維強化基材は、前記第1繊維束と、前記第2繊維束とを織って製織された織物を前記ライナに捲回した構造であってもよい。
[0019]
 これによれば、ライナの外側に繊維強化基材を製造する方法として、フィラメントワインディングがある。この方法では、繊維束を1本ずつライナに巻いていくため、生産性が低い。しかし、第1繊維束と第2繊維束で織物を製織しつつ、織物をライナに巻き付けていく方法であれば、フィラメントワインディングと比べると、生産性を高めることができる。
[0020]
 上記問題点を解決するための圧力容器は、円筒状の胴体部と、前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体を有し、前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器であって、前記繊維構造体が請求項1~請求項5のうちいずれか一項に記載の繊維構造体であることを要旨とする。
[0021]
 これによれば、ライナの境界付近において、軸方向に沿った境界から胴体部寄りの部分は、ライナの軸方向に直交する方向(以下、径方向とする)への寸法がドーム部より大きく、内圧応力が大きく作用する部分であり、しかも、ライナの径方向への寸法がドーム部から変化する場所であり、内圧を受けて変形し易い部分である。この変形し易い境界を含むように高弾性繊維束を配列することで、圧力容器の繊維強化複合材層における、胴体部付近の剛性を高め、当該繊維強化複合材層により、内圧を受けたときのライナの変形を抑制できる。
[0022]
 また、軸方向に沿った境界よりもドーム部寄りの部分は、ライナの径方向への寸法が胴体部よりも小さくなる部分であり、胴体部と比べると、内圧を受けて変形し難い部分であり、変形量の小さい部分である。
[0023]
 よって、圧力容器において、軸方向に沿った境界を含む胴体部に高弾性繊維束を配列し、この高弾性繊維束によって、ライナが内圧を受けたときの変形を抑制することで、境界を境にして胴体部とドーム部とで変形量に大きな差が生じることを抑制し、境界付近を曲げようとする力を抑制できる。その結果として、境界付近に発生するモーメントを抑え、モーメントに起因して繊維強化複合材層に発生する層間せん断応力を抑制でき、繊維強化複合材層に層間剥離が発生することを抑制できる。
[0024]
 したがって、繊維強化基材を形成する第1繊維束の弾性率を調節するだけで、繊維強化複合材層における層間剥離の発生を抑制でき、例えば、層間剥離を抑制するためのピンや、繊維層の追加を必要とせず、繊維強化複合材層における層間剥離の発生を抑制できる。

発明の効果

[0025]
 本発明によれば、部品を増やさずに繊維強化複合材層における層間剥離を抑制できる。

図面の簡単な説明

[0026]
[図1] 高圧タンクを模式的に示す断面図。
[図2] 繊維構造体を模式的に示す斜視図。
[図3] 繊維強化基材を模式的に示す正面図。
[図4] 高圧タンクの胴体部及びドーム部を示す図。
[図5] 高圧タンクの胴体部及びドーム部を示す断面図。
[図6] 織機による繊維構造体の製造方法を模式的に示す図。
[図7] (a)は緯糸を緯入れした状態を模式的に示す図、(b)は筬打ち動作後の状態を模式的に示す図、(c)はライナに繊維強化基材を巻き取った状態を模式的に示す図。
[図8] 別例の高圧タンクの胴体部及びドーム部を示す図。
[図9] 別例の高圧タンクの胴体部及びドーム部を示す断面図。
[図10] 別例の高圧タンクの胴体部及びドーム部を示す図。
[図11] 別例の高圧タンクの胴体部及びドーム部を示す断面図。

発明を実施するための形態

[0027]
 以下、繊維構造体、及び圧力容器を高圧タンクに具体化した一実施形態を図1~図7に従って説明する。
 図1に示すように、圧力容器としての高圧タンク10は、細長中空状のライナ12と、ライナ12の外側を覆う繊維強化基材19と、を有する繊維構造体21における繊維強化基材19にマトリックス樹脂(ドットハッチングで示す)を含浸硬化させて構成されている。高圧タンク10は、マトリックス樹脂が含浸硬化した繊維強化基材19よりなる繊維強化複合材層11によってライナ12を補強し、高圧タンク10の耐圧性(機械的強度)を確保している。
[0028]
 ライナ12は、樹脂製であり、細長中空状である。ライナ12の中心軸線Lの延びる方向を軸方向Yとする。ライナ12は、円筒状の胴体部13を備える。胴体部13の中心軸線はライナ12の中心軸線Lと一致する。ライナ12は、胴体部13の軸方向Yの両端に胴体部13に連続するドーム部14を有する。ドーム部14の軸方向は、ライナ12の軸方向と一致する。また、ライナ12は、各ドーム部14の先端側に口金部15を備える。
[0029]
 繊維構造体21は、この実施形態では炭素繊維を強化繊維として備える。なお、強化繊維は炭素繊維に限らず、ガラス繊維や炭化ケイ素系セラミック繊維やアラミド繊維、超高分子量ポリエチレン繊維等を使用してもよい。
[0030]
 図2又は図3に示すように、繊維構造体21は、第1繊維束としての複数本の経糸22と、第2繊維束としての複数本の緯糸23とを平織りして製織された織物24を捲回し、積層した構造である。経糸22と緯糸23は互いに直交して配列されている。複数本の経糸22は、ライナ12の軸方向Yへ互いに平行な状態で胴体部13及び各ドーム部14に配列されている。各経糸22の糸主軸方向X1は、胴体部13及びドーム部14においてライナ12の周方向Xへ直線的に延びている。なお、ライナ12において、ライナ12の中心軸線Lに直交する方向を径方向Zとする。
[0031]
 複数本の緯糸23は、ライナ12の周方向Xへ互いに平行な状態で配列されている。経糸22と緯糸23は直交して配列され、経糸22の糸主軸方向X1の延びる方向をライナ12の周方向Xに一致させることで、ライナ12を径方向Zに補強し、緯糸23の糸主軸方向X2をライナ12の軸方向Yに一致させることで、ライナ12を軸方向Yに補強している。
[0032]
 図1に示すように、各ドーム部14は、ライナ12の軸方向Yに沿って各ドーム部14の先端に向かうに従い先すぼみとなる形状である。ライナ12は、当該ライナ12の軸方向Yに沿った胴体部13と各ドーム部14との境に、ライナ12の周方向全体に亘って存在する境界Rを有する。径方向Zに沿ったライナ12の寸法を、ライナ12の外径とする。境界Rは、胴体部13からドーム部14に向かう方向において、ライナ12の外径が小さくなる位置に存在する。
[0033]
 各口金部15は金属製(例えばステンレス製)である。各口金部15は、ドーム部14との接続部15aを備えるとともに、ライナ12内の空間と連通する孔部15bを備える。ライナ12の軸方向Y一端側の口金部15の孔部15bにはバルブ(図示せず)が装着され、ライナ12の軸方向Y他端側の口金部15の孔部15bには螺子(図示せず)が螺合され、閉塞されている。各口金部15の接続部15aの外面は曲面状であり、接続部15aの外面はドーム部14の外面の一部を構成している。
[0034]
 図2の破線又は図4の破線に示すように、繊維強化基材19は、境界Rを含むように位置するように胴体部13に配列された経糸22として高弾性経糸22aを有する。高弾性経糸22aは、炭素繊維の中でも弾性率の高い繊維束であり、ライナ12を覆う他の炭素繊維よりも弾性率の高い高弾性繊維束である。高弾性経糸22aとしては、弾性率300~350GPaの繊維束を用いるのが好ましい。高弾性経糸22aを配列する範囲は、ライナ12が内圧を受けて荷重が加わったときの変形を抑制できる範囲であればよく、具体的には境界Rを含んでいればよい。そして、繊維強化基材19は、胴体部13に高弾性経糸22aが配列された部分として、高弾性経糸部K1を有する。
[0035]
 図4の1点鎖線に示すように、繊維強化基材19は、軸方向Yに沿って高弾性経糸部K1から口金部15に向けたドーム部14の一部分に配列された経糸22として第1低弾性経糸22bを有する。第1低弾性経糸22bは、高弾性経糸22aよりも弾性率が低い炭素繊維よりなる低弾性繊維束である。第1低弾性経糸22bとしては、弾性率200~280GPaの繊維束を用いるのが好ましい。
[0036]
 第1低弾性経糸22bは、軸方向Yに沿って高弾性経糸22aに隣り合い、かつ境界Rからドーム部14の一部分に亘って配列されている。そして、繊維強化基材19は、ドーム部14の一部分に第1低弾性経糸22bが配列された部分として、第1低弾性経糸部K2を有し、第1低弾性経糸部K2は、ライナ12の軸方向Yに沿って高弾性経糸部K1に連続する。そして、境界Rを挟んだ軸方向Yの両側に高弾性経糸部K1と第1低弾性経糸部K2が位置している。
[0037]
 図4の実線に示すように、繊維強化基材19は、ライナ12において高弾性経糸22a及び第1低弾性経糸22bが配列された部分以外に配列された経糸22として第2低弾性経糸22cを備える。第2低弾性経糸22cは、ドーム部14において、第1低弾性経糸22bが配列された部分から口金部15に至るまでのドーム部14の残りの部分に配列され、軸方向Yに沿って第1低弾性経糸部K2の第1低弾性経糸22bに隣り合うように配列されている。また、第2低弾性経糸22cは、胴体部13において、ライナ12の軸方向Yの両側の高弾性経糸22a同士の間の部分に配列され、各高弾性経糸部K1の高弾性経糸22aに隣り合うように配列されている。
[0038]
 第2低弾性経糸22cは、第1低弾性経糸22bよりも弾性率が高く、かつ高弾性経糸22aよりも弾性率が低い炭素繊維よりなる低弾性繊維束である。第2低弾性経糸22cとしては、弾性率280~300GPaの繊維束を用いるのが好ましい。そして、繊維強化基材19は、胴体部13の一部分及びドーム部14の一部分に第2低弾性経糸22cが配列された部分として、第2低弾性経糸部K3を有する。胴体部13に設けられた第2低弾性経糸部K3は、ライナ12の軸方向Yに沿って高弾性経糸部K1に連続し、ドーム部14に設けられた第2低弾性経糸部K3は、ライナ12の軸方向Yに沿って第1低弾性経糸部K2に連続する。繊維強化基材19において、胴体部13およびドーム部14のそれぞれにおける高弾性繊維束が配列された部分以外の部分において、低弾性繊維束が配列される。
[0039]
 図5に示すように、本実施形態では、高圧タンク10は、軸方向Yの一端から他端に向けて、第2低弾性経糸部K3、第1低弾性経糸部K2、高弾性経糸部K1、第2低弾性経糸部K3、高弾性経糸部K1、第1低弾性経糸部K2及び第2低弾性経糸部K3の順序で経糸部が並んでいる。そして、軸方向Yにおける両境界Rよりも胴体部13寄りの一部分が、高弾性経糸22aによって最も剛性が高く、両境界Rよりもドーム部14寄りの一部分が、第1低弾性経糸22bによって最も剛性が低くなっている。
[0040]
 次に、高圧タンク10の製造方法を説明する。
 高圧タンク10を製造する際は、経糸22としての高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cと、緯糸23を平織りしつつ、製職された織物24をライナ12に巻き付けていく。なお、以下の説明では、高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cを纏めて経糸22として説明する場合と、必要に応じて、経糸22を高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cと明記して説明する場合とがある。
[0041]
 図6に示すように、織物24の製織は、例えば、経糸22のうち、上下に分かれて配列された経糸22の開口を行う2枚の綜絖枠31a,31bを備えた平織織機で行う。なお、図7(a)に示すように、経糸22は、ライナ12の軸方向Yに沿って複数配列されているが、その複数の経糸22のうち、高弾性経糸部K1を形成する部分には高弾性経糸22aが配列され、第1低弾性経糸部K2を形成する部分には第1低弾性経糸22bが配列されている。さらに、複数の経糸22のうち、第2低弾性経糸部K3を形成する部分には第2低弾性経糸22cが配列されている。
[0042]
 図6に示すように、平織織機は、上下のうちの一方の経糸22を供給する経糸ビーム32と、上下のうちの他方の経糸22を供給する経糸ビーム33とが上下に配置された構造を有する。一方の経糸ビーム32から送り出される経糸22は一方の綜絖枠31aにより開口動作が行われ、他方の経糸ビーム33から送り出される経糸22は他方の綜絖枠31bにより開口動作が行われるようになっている。なお、綜絖枠31a,31bの目は図において黒丸で示されている。筬34は綜絖枠31a,31bと織り前35との間に配置されている。緯糸23は、上下に分かれた経糸22同士の開口に対して緯入れ機構(図示せず)により緯入れ(挿入)されるようになっている。経糸22の送り出し方向において、織り前35よりも先にはライナ12が回転可能に支持されている。ライナ12は、中心軸線Lを回転中心として回転する。
[0043]
 上記の平織織機で繊維強化基材19を製織する場合、図7(a)に示すように、経糸ビーム32,33から引き出された複数本の経糸22の端部をライナ12の外周面に、例えば粘着テープ製の固定部材36によって固定する。経糸22は、ライナ12の軸方向Yに沿って胴体部13及びドーム部14に配列される。詳細には、経糸22は、ライナ12の軸方向Y一端から中央部まで、第2低弾性経糸22c、第1低弾性経糸22b、高弾性経糸22a及び第2低弾性経糸22cの順序で配列され、軸方向Yの中央部から軸方向Y他端まで、第2低弾性経糸22c、高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cの順序で配列されている。
[0044]
 ライナ12を回転させない状態で、綜絖枠31a,31bを交互に上下方向に移動させることにより、一方の綜絖枠31aと、他方の綜絖枠31bとが逆方向に移動される。そして、経糸22は隣接するもの同士で交互に上下に開き、その都度形成される経糸開口37に対して、緯糸23が緯入れ(挿入)される。
[0045]
 そして、緯糸23が緯入れされて、筬34の筬打ち動作が行われ、綜絖枠31a,31bが逆方向に移動されて開口状態が変更されて、次の緯入れ動作が行われる。これらの動作が繰り返されて経糸22と緯糸23とが平織された織物24の一部が製織されるとともに、ライナ12に織物24の一部が一体化された状態が形成される。
[0046]
 図7(b)に示すように、緯糸23は筬34の筬打ち動作により固定部材36に向けて送り込まれる。
 その後、図7(c)に示すように、ライナ12を中心軸線Lを回転中心に回転させて織物24をライナ12に巻き取らせつつ、続けて、上記と同様に織物24の製織を行う。その結果、ドーム部14及び胴体部13の全体を覆う状態で織物24がライナ12に巻き付けられていく。そして、織物24が所要する積層数となるまで巻き付けられることで、ライナ12の外周面に繊維強化基材19が製造されるとともに、ライナ12の外面を繊維強化基材19で覆った繊維構造体21が製造される。
[0047]
 繊維構造体21の繊維強化基材19については、境界Rを含んだ胴体部13寄りの一部分に高弾性経糸部K1が形成され、この高弾性経糸部K1に隣り合うように口金部15寄りのドーム部14の一部分に第1低弾性経糸部K2が形成される。さらに、ライナ12における高弾性経糸部K1及び第1低弾性経糸部K2以外の部分に第2低弾性経糸部K3が形成される。
[0048]
 上記のように構成された繊維構造体21にマトリックス樹脂を含浸硬化させることにより、繊維強化基材19にマトリックス樹脂が含浸硬化し、繊維強化複合材層11がライナ12の外側に形成され、ライナ12の外側が繊維強化複合材層11で覆われた高圧タンク10が製造される。マトリックス樹脂の含浸硬化は、例えば、RTM(レジン・トランスファー・モールディング)法で行なわれる。
[0049]
 次に、高圧タンク10の作用を説明する。
 高圧タンク10は、例えば燃料電池自動車の燃料電池の水素源として使用される。高圧タンク10は図示しない配管がバルブに連結された状態で使用され、水素ガスの充填時には充填用の配管から水素ガスが高圧タンク10に充填される。高圧タンク10内には例えば数十MPaの圧力になるように水素ガスが充填される。
[0050]
 高圧タンク10に水素ガスが充填されると高圧タンク10内の圧力が高くなり、ライナ12が内側から押圧される。ライナ12には軸方向Y及び径方向Zへの荷重が加わり、内圧応力が発生する。この実施形態では、緯糸23により、ライナ12は軸方向Yへ補強され、経糸22により、ライナ12は径方向Zに補強されており、高圧タンク10の変形が抑止される。
[0051]
 上記実施形態によれば、以下のような作用効果を得ることができる。
 (1)ライナ12における境界R付近のうち、軸方向Yに沿う境界Rよりも胴体部13寄りの部分は内圧による荷重が加わって変形しやすい部分である。この変形しやすい部分において、境界Rを含むように高弾性経糸22aを配列して高弾性経糸部K1を設け、繊維強化複合材層11における剛性を高め、ライナ12の変形を抑制するようにした。一方、軸方向Yに沿う境界Rよりもドーム部14寄りの部分は、胴体部13寄りの部分と比べて変形し難い部分である。このため、境界R付近において、高弾性経糸部K1により、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近を曲げようとする力を抑制できる。その結果として、境界R付近に発生するモーメントを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。
[0052]
 (2)境界R付近のうち、ドーム部14寄りの部分は内圧を受けて変形し難い部分である。この変形し難い部分に第1低弾性経糸部K2を設け、ライナ12の変形を強く抑制しないようにした。そして、高弾性経糸部K1と第1低弾性経糸部K2を境界Rを挟んで設けることで、ライナ12の変形量に大きな差が生じることを抑制し、境界R付近を曲げようとする力を抑制できる。その結果として、境界R付近に発生するモーメントを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。
[0053]
 (3)胴体部13及びドーム部14に第2低弾性経糸22cを配列した第2低弾性経糸部K3を設けた。この第2低弾性経糸部K3により、ライナ12において高弾性経糸部K1及び第1低弾性経糸部K2以外の部分を補強できる。
[0054]
 (4)ライナ12の外側に繊維強化基材19を備える繊維構造体21を製造する方法として、フィラメントワインディングがある。しかし、この方法では、糸を1本ずつライナ12に巻いていくため、生産性が低い。本実施形態では、経糸22と緯糸23で織物24を製織しつつ、その経糸22の種類を高弾性経糸22a、第1低弾性経糸22b、及び第2低弾性経糸22cに変えながら織物24をライナ12に巻き付けていくため、フィラメントワインディングと比べると、生産性を高めることができる。
[0055]
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○ 図8又は図9に示すように、繊維強化基材19は、境界Rよりも胴体部13寄りの一部分から口金部15に至るまで配列された高弾性経糸22aを有する。高弾性経糸22aは、軸方向Yに沿って胴体部13から境界Rを越えて口金部15に至るまで配列されており、境界Rを含むように配列されている。そして、繊維強化基材19は、境界Rよりも胴体部13寄りの部分から口金部15に至るまで高弾性経糸部K1を有する。また、繊維強化基材19は、ライナ12の軸方向Yの両側の高弾性経糸部K1に挟まれた部分に配列された第2低弾性経糸22cを有し、高弾性経糸部K1以外の部分に、第2低弾性経糸22cで構成された第2低弾性経糸部K3を有する。
[0056]
 このように構成した場合であっても、ライナ12において変形しやすい境界Rを含むように高弾性経糸部K1を配列して剛性を高め、境界R付近での変形を抑制するようにした。このため、境界R付近において、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近で曲げが発生することを抑制できる。その結果として、境界R付近にモーメントが発生することを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力の発生を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。
[0057]
 また、経糸22として、高弾性経糸22aと第2低弾性経糸22cを用い、ライナ12の軸方向Yの両側で高弾性経糸22aと第2低弾性経糸22cに分けて配列する必要がないため、繊維構造体21の製造が容易となる。
[0058]
 ○ 図10又は図11に示すように、繊維強化基材19は、境界Rを挟んで胴体部13寄りの一部分とドーム部14寄りの一部分に亘って配列された高弾性経糸22aを有し、その高弾性経糸22aの配列された部分に高弾性経糸部K1を有する。高弾性経糸22aは、軸方向Yに沿ってドーム部14における境界R寄りの一部分から境界Rを越えて胴体部13における境界R寄りの一部分にかけて配列されている。つまり、高弾性経糸22aは、境界Rを含むように配列されている。また、繊維強化基材19は、高弾性経糸部K1以外の部分に配列された第2低弾性経糸22cを有し、高弾性経糸部K1以外の部分に、第2低弾性経糸22cで構成された第2低弾性経糸部K3を有する。
[0059]
 このように構成した場合であっても、ライナ12において変形しやすい境界Rを含むように高弾性経糸部K1を配列して剛性を高め、境界R付近での変形を抑制するようにした。このため、境界R付近において、胴体部13とドーム部14とで変形量に大きな差が生じることを抑制し、境界R付近で曲げが発生することを抑制できる。その結果として、境界R付近にモーメントが発生することを抑制し、モーメントに起因した繊維強化複合材層11における層間せん断応力の発生を抑制でき、繊維強化複合材層11に層間剥離が発生することを抑制できる。
[0060]
 ○ 繊維構造体21を製造する方法として、平織織機で、高弾性経糸22a、及び高弾性経糸22aより低弾性率の低弾性繊維束を含む織物を製織した後、フィラメントワインディングによって織物の外側に強化繊維を巻き付けて繊維強化基材19を製織してもよい。
[0061]
 ○ 繊維構造体21を製造する方法として、高弾性経糸22a及び高弾性経糸22aより低弾性率の低弾性繊維束を含む経糸22をライナ12にフープ巻きして高弾性経糸部K1及び低弾性経糸部を形成した後、それらの外側に、緯糸23を積層したり、経糸22及び緯糸23を巻き付けて繊維強化基材19を製織してもよい。
[0062]
 ○ 繊維強化基材19は多層織りによって製織された多層織物であってもよい。例えば、繊維強化基材19は、経糸22が互いに平行に配列された複数の経糸層と、緯糸23が互いに平行に配列された複数の緯糸層と、経糸層と、緯糸層とを積層方向に結合する結合糸と、を備える。経糸層を製造する際、高弾性経糸22a、及び高弾性経糸22aより低弾性率の低弾性繊維束を用いる。
[0063]
 ○ 実施形態では、繊維強化基材19は、平織りして製織された織物24を積層して構成したが、これに限らない。例えば、繊維強化基材19は、朱子織り又は綾織りして製織された織物を積層した構造であってもよい。
[0064]
 ○ 実施形態では、第1繊維束を経糸22とし、第2繊維束を緯糸23としたが、第1繊維束を緯糸23とし、第2繊維束を経糸22としてもよい。
 ○ ライナ12は、胴体部13の軸方向Yの一端側にドーム部14が連続し、胴体部13の軸方向Yの他端側には平坦面な底壁が連続した形状であってもよい。この場合、口金部15はドーム部14の存在する軸方向Y一端側のみに存在する。
[0065]
 ○ ライナ12全体をアルミニウム製とする代わりにアルミニウム合金製としたり、口金部15の材質をステンレスとは異なる金属で形成したりしてもよい。
 ○ ライナ12は、別体である胴体部13とドーム部14とを溶接して一体化したものでもよい。
[0066]
 ○ ライナ12及び口金部15を金属で一体形成してもよい。
 ○ 高圧タンク10は燃料電池搭載電気自動車の水素源として搭載されて使用するものに限らず、例えば、水素エンジンの水素源やヒートポンプ等に適用してもよい。また、家庭用電源の燃料電池の水素源として使用してもよい。
[0067]
 ○ 圧力容器として水素を貯蔵する高圧タンクに限らず、例えば窒素、圧縮天然ガス等の他のガスを貯蔵す圧力容器に適用してもよい。

符号の説明

[0068]
 L  中心軸線
 R  境界
 X  周方向
 Y  軸方向
 Z  径方向
 X1,X2  糸主軸方向
 10  圧力容器としての高圧タンク
 11  繊維強化複合材層
 12  ライナ
 13  胴体部
 14  ドーム部
 15  口金部
 19  繊維強化基材
 21  繊維構造体
 22  第1繊維束としての経糸
 22a  高弾性繊維束としての高弾性経糸
 22b  低弾性繊維束としての第1低弾性経糸
 22c  低弾性繊維束としての第2低弾性経糸
 23  第2繊維束としての緯糸
 24  織物

請求の範囲

[請求項1]
 円筒状の胴体部と、
 前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、
 前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、
 前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体であって、
 前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器を構成し、
 前記繊維強化基材は、前記ライナの周方向へ糸主軸方向が延びるように前記胴体部及び前記ドーム部に配列された第1繊維束と、前記第1繊維束と織物を形成する第2繊維束とを有し、
 前記軸方向に沿う前記胴体部と前記ドーム部との境を境界とした場合、
 前記繊維強化基材は、前記第1繊維束として、他の第1繊維束よりも弾性率の高い高弾性繊維束を有するとともに、他の第1繊維束として、前記高弾性繊維束よりも弾性率の低い低弾性繊維束を有し、前記高弾性繊維束は前記境界を含んで前記胴体部に配列されていることを特徴とする繊維構造体。
[請求項2]
 前記低弾性繊維束は、前記高弾性繊維束よりも弾性率が低い第1低弾性繊維束、及び、前記第1低弾性繊維束よりも弾性率が高く、かつ前記高弾性繊維束よりも弾性率が低い第2低弾性繊維束を有し、
 前記繊維強化基材において、
 前記ドーム部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第1低弾性繊維束が配列され、
 前記胴体部には、前記軸方向に沿って前記高弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列され、
 前記ドーム部において、前記軸方向に沿って前記第1低弾性繊維束に隣り合う前記低弾性繊維束として前記第2低弾性繊維束が配列されている請求項1に記載の繊維構造体。
[請求項3]
 前記繊維強化基材において、前記軸方向に沿って前記境界を挟んだ前記胴体部及び前記ドーム部に前記高弾性繊維束が配列され、
 前記胴体部及び前記ドーム部それぞれにおける前記高弾性繊維束が配列された部分以外の部分において前記低弾性繊維束が配列されている請求項1に記載の繊維構造体。
[請求項4]
 前記繊維強化基材において、前記軸方向に沿って前記胴体部から前記口金部に至るまで前記高弾性繊維束が配列されるとともに、前記胴体部に前記低弾性繊維束が配列されている請求項1に記載の繊維構造体。
[請求項5]
 前記繊維強化基材は、前記第1繊維束と、前記第2繊維束とを織って製織された織物を前記ライナに捲回した構造である請求項1~請求項4のうちいずれか一項に記載の繊維構造体。
[請求項6]
 円筒状の胴体部と、
 前記胴体部の中心軸線の延びる軸方向に沿って前記胴体部に連続し、前記中心軸線に向けて先すぼみする形状のドーム部と、
 前記ドーム部の先すぼみした先端に設けられる口金部と、を有するライナを備えるとともに、
 前記ライナにおける前記胴体部及び前記ドーム部を外側から覆う繊維強化基材を有する繊維構造体を有し、
 前記繊維強化基材にマトリックス樹脂を含浸硬化させた繊維強化複合材層によって前記ライナを補強する圧力容器であって、
 前記繊維構造体が請求項1~請求項5のうちいずれか一項に記載の繊維構造体であることを特徴とする圧力容器。

図面

[ 図 1]

[ 図 2]

[ 図 3]

[ 図 4]

[ 図 5]

[ 図 6]

[ 図 7]

[ 図 8]

[ 図 9]

[ 図 10]

[ 図 11]